Fuel Cells and the Emerging Hydrogen Energy Economy

Jerald A. Cole California Hydrogen Business Council

Presented to

Association of Energy Engineers

Southern California Chapter 2003 Annual Expo and Conference

20 March 2003

Overview

- The Promise of Fuel Cells
 - What fuel cells are and are not
- Types of Fuel Cells
- Fuel Cell Applications
- Availability of Fuel Cell Power Systems
- Economics of Fuel Cell Power Systems
- Summary

Fuel cells are not:
... a panacea for the future
... more efficient than all other technologies
... free of pollutants and greenhouse gases

... the solution to all our energy and environmental concerns

- Fuel cells are:
 - ... An important part of a balanced future energy policy
 - ... A viable alternative to batteries, ICEs and other energy technologies in many applications
 - ... More efficient than conventional energy technologies in specific applications
 - ... A technology whose time has come

- Polymer Electrolyte Membrane (PEM)
- Direct Methanol
- Alkali
- Metal-air
- Phosphoric Acid
- Molten Carbonate
- Solid Oxide

- Handheld applications
- Portable power
- Small-scale distributed power
- Large-scale distributed power
- Transportation, mobility & utility

- Metal-air fuel cells
 Direct methanol fuel cells
 - Cell phones
 - Lap top computers
 - PDAs, calculators
 - Diagnostic equipment
 - Power tools
 - President George W. Bush speaking on a cell phone powered by an *MTI MicroFuel Cells* direct methanol fuel cell

- Polymer electrolyte membrane
- Metal-Air fuel cells
- Alkali fuel cells
 - Remote applications
 - Recreational use
 - Emergency response
 - Backup power

Metallic Power 1.6 kW zinc-air fuel cell

Fuel Cell Applications Small-scale distributed power

- Polymer electrolyte membrane
- Metal-air fuel cells
- Solid oxide fuel cells

- Residential
- Small Commercial
- Back up or primary power
- Grid parallel
- Grid independent
- Pipeline NG or LPG operation SOFC stack

Global Thermoelectric 800W

- Solid oxide
- Molten carbonate
- Phosphoric acid
 - Large commercial & industrial applications
 - Back up or primary power
 - Premium power
 - Natural gas, LPG or digester gas
 - Biomass under development

Fuel Cell Applications Transportation & mobility

- Polymer electrolyte membrane
- Alkali fuel cells
- Metal air fuel cells
- Solid oxide fuel cells
 - Automobiles
 - Public transportation
 - Hotel power (trucks and trains)
 - Utility vehicles
 - Personal mobility vehicles

Fuel Cell Availability Commercially available fuel cells

- PEM fuel cells
 - Small distributed power/cogen
 - Portable power
- Phosphoric acid fuel cells
 - Commercial/industrial DPG/cogen/renewable
- Molten carbonate fuel cells
 - 250 kW– 2 MW scale DPG/cogen/combined cycle
 - Renewables on the horizon

Fuel Cell Availability

- Plug Power
 - 4.5 kWe back up power/cogen
 - NG operation
- Ballard/Coleman Powermate
 - 1 kW backup/portable system
 - Hydrogen operation
- Avista Laboratories
 - 100, 500 W, 1 kW
 - Hydrogen operation

Fuel Cell Availability EM fuel cells

Plug Power GenSys Residential/light commercial

- 4.5 kWe/6.7 kWth
- Backup power
- Grid parallel or independent
- NG (hydrogen)
- 1- and 2-year warrantees

- Coleman Powermate
 - Ballard PEM fuel cell
 - -1 kWe
 - -120 VAC
 - Transportable
 - Requires hydrogen
 - Industrial only

Fuel Cell Availability

- Avista Labs
 - Independence 1000
 - Commercial/industrial only
 - 48 VDC output
 - Premium power

Fuel Cell Availability Phosphoric acid fuel cells

• UTC Fuel Cells

- 200 kW industrial operation
- 900,000 Btu/hr cogen heat
- Shown in digester gas application

Fuel Cell Availability Molten carbonate fuel cell

Fuel Cell Energy

- 250 kW, 1 MW, 2 MW units available
- 47 50 % efficient
- Cogen heat available at > 400 °C
- Renewable fuel systems under development

Fuel Cell Economics

- PEM Fuel Cells
 - \$6,000/kW hydrogen only
 - \$11,000/kW NG (fuel processor) with cogen
 - \$13,800/kW installed
 - Expected to drop to \$4,500/kW in 2004
- PAFC
 - \$4,000/kW NG with cogen
 - \$5,200/kW installed
- MCFC
 - \$4,000/kW NG with cogen
 - \$4,700/kW installed

California

- Various state and local programs offering up to \$4,500/kW (50 %) for renewable fuel sources, \$2,500/kW (40 %) for NG and LPG operation
- DoD Climate Change Fuel Cell Program – \$1,000/kW (33 %)
- Federal Business Tax Credit (S.461)
 - -\$1,000/kW

Fuel Cell Economics Example case - PAFC

Fuel Cell Economics Example case - PAFC

Summary

- Fuel cell technology is available today
- Economics are very site specific
 - Rely heavily on rebates, tax credits
- Value beyond simple power more difficult to quantify
 - Cost of outages
 - Value of "security of supply"

www.ch2bc.org

Addendum

Introduction to Fuel Cells

- Fuel Cells 101
 - Science & Technology of Fuel Cells
- Fuel cells 102
 - Types of Fuel Cells
 - Major Distinctions

Fuel Cells 101 Science and technology of fuel cells

- History of Fuel Cells
 - Invented in 1839 by Sir William Grove
 - Known then as the gas voltaic battery
 - The term *fuel cell* was proposed by Mond and Langer in 1889
 - Later revived for space programs
 - Evolved into seven major commercially viable technologies
 - Several other technologies waiting in the wings

Fuel Cells 101 Science and technology of fuel cells

- Fuel Cell Science
 - Fuel and oxidant combined to produce electric current
 - Fuel delivered at the anode
 - Oxidant delivered at the cathode
 - Hydrogen-oxygen fuel cell has the simplest chemical system

Anode reaction: $H_2 \rightarrow 2 H^+ + 2 e^-$ Cathode reactions: $\frac{1}{2} O_2 + 2 e^- \rightarrow O^{2-}$
 $O^{2-} + 2 H^+ \rightarrow H_2O$

Fuel Cells 101 Science and technology of fuel cells

H_-

 H_2

 H_2^-

Catalyst

 $H_2 \rightarrow$

 H_2

 H_{2}

 H_{2}

Fuel Cell Science

- 1) Hydrogen reacts at the anode to produce protons and free electrons
- 2) Electrons are conducted across the "load" between the anode and cathode
- 3) Protons are conducted across the electrolyte
- 4) Oxygen molecules react with electrons to form oxide anions on the cathode
 Anode
- 5) Protons and oxide anions react to form water vapor

Membrane (electrolyte)

O²⁻

 O^{2}

02-

02-

H₂C

H₂(

Cathode Catalyst

H₂O

 H_2O

- Types of fuel cells
 - Ways of classifying fuel cells
- Major distinctions
 - Temperature
 - Electrolyte
 - Fuel type

- Ways of Classifying Fuel Cells
 - Temperature
 - Low, intermediate, high
 - Electrolyte
 - Solid, liquid
 - Acidic, basic
 - Fuel
 - Hydrogen
 - Syngas (internally reforming)
 - Metallic

Fuel Cells 102 Types of fuel cells and their major distinctions

- Low temperature (< 100^{-o}C)
 - PEM
 - Direct Methanol
 - Alkali
 - Metallic
- Intermediate temperature (100 250 °C)
 - Phosphoric acid
 - Alkali
- High temperature (up to 1000 °C)
 - Molten carbonate
 - Solid oxide

- Solid electrolyte
 - Solid oxide
 - PEM
 - Direct Methanol
- Liquid electrolyte
 - Metallic
 - Phosphoric acid
 - Molten carbonate
 - Alkali

- Acid electrolyte
 - PEM, Direct Methanol, Phosphoric Acid
 - Proton is charge carrier
- Basic electrolyte
 - Alkali, Molten carbonate, Metallic, Solid oxide
 - Anionic charge carrier
 - OH⁻, CO₃²⁻, OH ⁻, O²⁻, respectively

- Fuel Type
 - Metallic
 - Aluminum, zinc
 - Hydrogen
 - PEM, Alkali, Phosphoric acid
 - Syngas
 - Molten carbonate, Solid oxide
 - Alcohol
 - Direct methanol