OptiSense LLC

Optical Sensors for the Hydrogen Industry Caltech/MIT Enterprise Forum

California Institute of Technology

20 May 2003

S

2

140

ິ

S

(1)

1

(1)

S S ŝ 4 (1 1 а.

The Key Problem

- Hydrogen
 - Widely used (over 3 trillion cu. ft. produced annually)
 - Highly Flammable (4 74 % in air)
 - Difficult to Contain (leaks easily)
 - Hard to Detect
 - Selective sensors expensive and/or difficult to operate
 - Inexpensive sensors non-selective and/or create additional hazards (spark, hot surface, etc.)
 - No good solution currently available
 - Yet, this gas is poised to be the energy carrier of the future!!!

Market Need

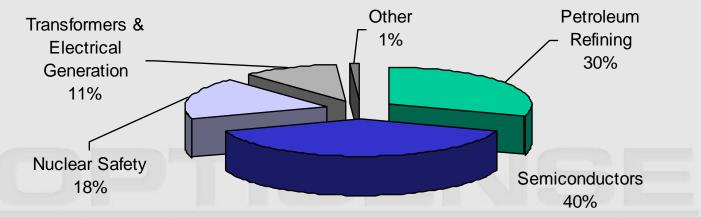
Inexpensive hydrogen and oxygen sensors

Our Solution

Optical Detection

OptiSense - S - S - S Hydrogen Oxygen Sensing Sensing Element Element Now made affordable by investments of the telecom industry

 Extensively explored
 Tremendous challenges


 Proprietary and patented

manufacturing process key to our advantage

Combined hydrogen/oxygen sensor prototype

Markets

- Key is industrial gases and safety
 - Customers and markets (Source: DCH Tech., 2001)

Total market estimated at \$115 Million today
\$150 million by 2005

- Over 10 percent annual growth rate through 2010
- Does not include industrial gases
 - Potential to be largest single market
- One industrial gas customer has identified a single internal process with need for 4,000 units if cost is less than \$10,000 each (in the U.S. alone!)

S

2

uff

S

ŝ

(1)

1

(1

-

а.

Markets

- Additional Niche markets
 - U.S. military \rightarrow weapons systems
 - NASA/Boeing \rightarrow aerospace applications, launch vehicles
 - Highly specialized applications
 - High margin, low volume
 - Key to further advancing and challenging the technology
- **Future Markets**
 - Hydrogen infrastructure/Hydrogen economy
 - Fuel cells (industrial, commercial, residential safety)
 - e.g., hydrogen refueling will require combined hydrogen/oxygen sensor

Competitive Advantages

- Low-tech mfg process Off-the-shelf
 ancillary components
 - Technology clearly superior for many applications
 - Intrinsic low cost even at smaller volumes
 - Material cost today ~ \$80.00 per unit
- Comparison with competition
 - Selective sensors at > \$1,000 per unit
 - Non-selective sensor at > \$400 per unit
 - Costs expected to drop with volume, but we believe we have the edge

Future competition expected

- Honeywell
- H2Scan
- Fuel Cell Safety Systems, etc.

S

2

140

S

S

()

4

(1

а.

Program to Date

- Successful demo of early fiberoptic units with NASA/Boeing
- Alpha prototypes for customers
 - Planned for early 2003 first unit shown at 2002 Fuel Cell Symposium
 - Introduced to U.S. and Japanese Markets in late 2002/early 2003 - Europe being explored

 Next generation system now under development with grant from NASA

S

100

CD

ŝ

(1)

Development Plan

- Reengineering of sensor elements
 - No longer a laboratory experiment!
 - Basic manufacturing and QA/QC principles
- Outsourcing of electronics (signal processing) and packaging
- Teaming with Existing Distributors – Packaging, market knowledge
- First commercial prototype ready 6 months from funding

- First product release within 12 months

S

2

100


S

(J)

(1)

1

()

Marketing and Sales Plan

- Focus on existing industrial market
- Team with existing distributors
 - Focus on those with existing distribution channels
 - Business discussions
 - Major sensor supplier
 - Industrial gas companies
 - Petroleum refiners
 - Automobile producers, fuel cell developers
- Fuel cells too uncertain a basis for short term marketing and sales projections
 - However, a big brass ring in the out years
 - May provide a framework for exit strategy!

Key Personnel

- Aaron Cohen President
 - 30 year business veteran, Chairman of National Testing Systems, Inc.

Jerald Cole – Chief Technology Officer

• 22 years product/process development and management of focused product oriented teams

Elias Azrak – Chief Financial Officer

• Investment banker, former treasurer of Fortune 500 Entertainment Conglomerate.

• Other

• Personnel from parent company, plus outside experts ready to join once funding is in place

Financial Summary

- \$6.5 million invested in technology – Government Grant Funding
- \$240,000 private investment in 2002
 - Alpha prototype development
- Seeking to raise \$3 million
 - Initial financing of \$500,000 in 2003
 - Develop commercial product
 - Hire needed additional staff
 - Secondary financing of \$2.5 Million in 2004
 - Sales and Profit Projections

\$Millions					
Year	<u>2004</u>	2005	2006	2007	2008
Sales	0.4	4.5	12	20	28
Profit (loss)	(0.7)	(1.3)	3	6.5	11

S

2

ur

S

S

4

(1

Lessons Learned (1)

- Seed investment from private investor
 - Used to finance project leading to alpha prototypes
 - Subcontracted effort to parent company
 - Prepared R&D plan and monitored progress
- Result:
 - Mindset, priorities inappropriate for product development, sense of urgency lacking

Lesson:

 Extract key technical personnel from parent company, sever former management ties

Lessons Learned (2)

- OptiSense Management efforts focused on customers, market development
 - Trade shows, technical conferences
 - Market studies
 - Networking
- Result:
 - Good customers relationships, but no product

Lesson:

 Balance focus between technology development, strategic relationships