Hydrogen: The Future of Energy?

Jerald A. Cole

Chief Technology Officer Hydrogen Ventures

Whittier Sunrise Rotary

15 July 2003

Facts About Hydrogen Today

- Where does it come from?
- Amount
 Produced
- Total Market
 Value
- Key Markets and Uses

- Facts About Hydrogen Today
- Where does hydrogen come from?
- Hydrogen is abundant
 - Accounts for 70 percent of the known universe
 - On Earth, however, it is a distant 10th place
 - Still, very easy to find!
 - Produced mainly from natural gas
 - Other sources:
 - Electrolysis of water
 - Byproduct of chemicals production

HYDROGENVENTURES

Facts About Hydrogen Today

- How much is made?
- World production (2001): 540 billion m³/y
- Excluding ammonia production: 260 billion m³/y

(Source: Air Liquide)

Facts About Hydrogen Today

- What does it cost?
- Production cost
 - Typically about 18 20 ¢/100 cu. ft.
- Delivered costs
 - Very large volumes \$0.60 \$0.70/100 cu. ft.
 - In smaller volumes easily 10 times as much
- World production amounts to about \$3 billion
 - Point of sale value closer to \$10 billion

Gallon of gasoline equivalents:

Production cost 85 ¢/gal

Delivered cost \$2.50 - \$3.00/gal

Facts About Hydrogen Today

Hydrogen Safety

- Hindenburg Syndrome
- Physical Aspects
 - Confined Space
 Explosions
 - Comparative
 Effects Radiation
 - Smoke,
 Asphyxiation

HYDROGENVENTURES Hydrogen Safety

The Zeppelin The Hindenburg

- Contained 7 million cu.
 ft. of hydrogen
- Burned and crashed in Lakehurst NJ on 6 May 1937
- 62 survivors
- 35 dead
 - One was burned
 - 34 jumped or fell

Cause of fire has now been attributed to the cellulose acetate/aluminum coating on the skin of the aircraft

Hydrogen Safety

- Other Safety Issues
- Confined space explosions
 - Not as likely with hydrogen
- Radiation
 - Major source of injury or damage with common fuels
 - Virtually non-existent with hydrogen
- Smoke, asphyxiation
 - No inhalation hazard from hydrogen itself
 - Few harmful products of combustion

Hydrogen Safety

Comparative flame properties

Property	Gasoline	Methane	Hydrogen
Flammability Limits In Air (vol %)	1.0 - 7.6	5.3 - 15.0	4.0 - 75.0
Ignition Energy In Air (Mj)	0.24	0.29	0.02
Ignition Temperature (°C)	228 - 471	540	585
Flame Temperature In Air (°C)	2197	1875	2045
Explosion Energy (g-TNT/kJ)	0.25	0.19	0.17
Flame Emissivity (%)	34 - 43	25 - 33	17 - 25

Hydrogen safety issues are *different* than those of other fuels

Hydrogen and Fuel Cells

Fuel Cell Type	Fuel Used					
	Hydrogen	Natural Gas	LPG	Syngas	Other	
PEM	\checkmark	×	×	×	×	
Metal Air	×	×	×	×	\checkmark	
Direct Methanol	×	×	×	×	\checkmark	
Alkali	\checkmark	×	×	×	×	
Phosphoric Acid	\checkmark	×	×	×	×	
Molten Carbonate	×	0	×	\checkmark	0	
Solid Oxide	0	0	0	\checkmark	×	

- Where will it come from?
- Renewable Hydrogen?
- Hydrogen as a Fuel
- How Much will be Needed?

- Where will it come from?
- Near term
 - Petroleum and natural gas
 - Coal emerging technologies
- Mid term (< 50 years)
 - Electrolysis
 - Biological production
 - Other renewable sources
- Long term
 - Nuclear
 - Direct solar photolysis

(Source: U.S. DOE)

The Future of Hydrogen

- Renewable Hydrogen
- The Goal!
- Definition
 - Hydrogen produced with no net release of carbon dioxide to the atmosphere
 - Hydrogen produced from nonfossil resources
- Examples
 - Electrolysis, photolysis
 - Agricultural waste, sewage, biomass

- Hydrogen as a fuel
- Two modes of use
 - Drop-in replacement for present-day *conventional* fuels
 - Medium for storage of energy
 - *i.e.* for electricity generation

- Environmental effects
 - Some residual effects in most applications
 - Not fully evaluated, needs further study

HYDROGENVENTURES

How much will we need?
Hydrogen as a transportation fuel

The Future of Hydrogen

- How much will we need?
- As a transportation fuel
 - Will require about 10x current production
 - Assumes certain increases in vehicle efficiency
- Total Energy Market
 - Will require about 18 20 x current production

Summary

- Hydrogen is plentiful

 Easy to find, produce and store
- Safety concerns

 We know how to address these
- Environmentally issues

 Not fully defined, but looks promising
- The Future of Hydrogen
 - Details uncertain
 - Very much a reality